3.1372 \(\int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=447 \[ -\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{3 a b d \left (a^2-b^2\right ) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{3 b d \left (a^2-b^2\right ) \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}}+\frac{2 \sin (c+d x) \left (a^2 b^2 (3 A+7 C)-3 a^4 C-4 a b^3 B+A b^4\right )}{3 b^2 d \left (a^2-b^2\right )^2 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \sqrt{\cos (c+d x)} \left (a^2 b^2 (3 A+7 C)-3 a^4 C-4 a b^3 B+A b^4\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a b^2 d \left (a^2-b^2\right )^2 \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{2 C \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{b^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}} \]

[Out]

(-2*(A*b^2 - a*(b*B - a*C))*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(3*a*b*(
a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*C*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi
[2, (c + d*x)/2, (2*a)/(a + b)])/(b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - (2*(A*b^4 - 4*a*b^3*B -
 3*a^4*C + a^2*b^2*(3*A + 7*C))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*
x]])/(3*a*b^2*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) - (2*(A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(
3*b*(a^2 - b^2)*d*Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)) + (2*(A*b^4 - 4*a*b^3*B - 3*a^4*C + a^2*b^2*(
3*A + 7*C))*Sin[c + d*x])/(3*b^2*(a^2 - b^2)^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 1.64815, antiderivative size = 447, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 13, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.289, Rules used = {4265, 4098, 4108, 3859, 2807, 2805, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ -\frac{2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{3 b d \left (a^2-b^2\right ) \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}}+\frac{2 \sin (c+d x) \left (a^2 b^2 (3 A+7 C)-3 a^4 C-4 a b^3 B+A b^4\right )}{3 b^2 d \left (a^2-b^2\right )^2 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a b d \left (a^2-b^2\right ) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \sqrt{\cos (c+d x)} \left (a^2 b^2 (3 A+7 C)-3 a^4 C-4 a b^3 B+A b^4\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a b^2 d \left (a^2-b^2\right )^2 \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{2 C \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{b^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

(-2*(A*b^2 - a*(b*B - a*C))*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(3*a*b*(
a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*C*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi
[2, (c + d*x)/2, (2*a)/(a + b)])/(b^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) - (2*(A*b^4 - 4*a*b^3*B -
 3*a^4*C + a^2*b^2*(3*A + 7*C))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*
x]])/(3*a*b^2*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) - (2*(A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(
3*b*(a^2 - b^2)*d*Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)) + (2*(A*b^4 - 4*a*b^3*B - 3*a^4*C + a^2*b^2*(
3*A + 7*C))*Sin[c + d*x])/(3*b^2*(a^2 - b^2)^2*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]])

Rule 4265

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 4098

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(d*(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(
a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1))/(b*f*(a^2 - b^2)*(m + 1)), x] + Dist[d/(b*(a^2 - b^2)*(m
 + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A*b^2*(n - 1) - a*(b*B - a*C)*(n - 1) +
 b*(a*A - b*B + a*C)*(m + 1)*Csc[e + f*x] - (b*(A*b - a*B)*(m + n + 1) + C*(a^2*n + b^2*(m + 1)))*Csc[e + f*x]
^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 4108

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{5/2}} \, dx\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}}-\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)} \left (\frac{1}{2} \left (A b^2-a (b B-a C)\right )+\frac{3}{2} b (b B-a (A+C)) \sec (c+d x)-\frac{3}{2} \left (a^2-b^2\right ) C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx}{3 b \left (a^2-b^2\right )}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}}+\frac{2 \left (A b^4-4 a b^3 B-3 a^4 C+a^2 b^2 (3 A+7 C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{1}{4} \left (-A b^4+4 a b^3 B+3 a^4 C-a^2 b^2 (3 A+7 C)\right )+\frac{1}{4} b \left (a^2 b B+3 b^3 B+2 a^3 C-2 a b^2 (2 A+3 C)\right ) \sec (c+d x)+\frac{3}{4} \left (a^2-b^2\right )^2 C \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{3 b^2 \left (a^2-b^2\right )^2}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}}+\frac{2 \left (A b^4-4 a b^3 B-3 a^4 C+a^2 b^2 (3 A+7 C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (4 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{1}{4} \left (-A b^4+4 a b^3 B+3 a^4 C-a^2 b^2 (3 A+7 C)\right )+\frac{1}{4} b \left (a^2 b B+3 b^3 B+2 a^3 C-2 a b^2 (2 A+3 C)\right ) \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{3 b^2 \left (a^2-b^2\right )^2}+\frac{\left (C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{b^2}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}}+\frac{2 \left (A b^4-4 a b^3 B-3 a^4 C+a^2 b^2 (3 A+7 C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{\left (\left (A b^2-a b B+a^2 C\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx}{3 a b \left (a^2-b^2\right )}+\frac{\left (\left (-A b^4+4 a b^3 B+3 a^4 C-a^2 b^2 (3 A+7 C)\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx}{3 a b^2 \left (a^2-b^2\right )^2}+\frac{\left (C \sqrt{b+a \cos (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt{b+a \cos (c+d x)}} \, dx}{b^2 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}}+\frac{2 \left (A b^4-4 a b^3 B-3 a^4 C+a^2 b^2 (3 A+7 C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{\left (\left (A b^2-a b B+a^2 C\right ) \sqrt{b+a \cos (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{3 a b \left (a^2-b^2\right ) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (C \sqrt{\frac{b+a \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{b^2 \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (-A b^4+4 a b^3 B+3 a^4 C-a^2 b^2 (3 A+7 C)\right ) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{3 a b^2 \left (a^2-b^2\right )^2 \sqrt{b+a \cos (c+d x)}}\\ &=\frac{2 C \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{b^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}}+\frac{2 \left (A b^4-4 a b^3 B-3 a^4 C+a^2 b^2 (3 A+7 C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{\left (\left (A b^2-a b B+a^2 C\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{3 a b \left (a^2-b^2\right ) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (-A b^4+4 a b^3 B+3 a^4 C-a^2 b^2 (3 A+7 C)\right ) \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{3 a b^2 \left (a^2-b^2\right )^2 \sqrt{\frac{b+a \cos (c+d x)}{a+b}}}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a b \left (a^2-b^2\right ) d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{2 C \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{b^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \left (A b^4-4 a b^3 B-3 a^4 C+a^2 b^2 (3 A+7 C)\right ) \sqrt{\cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{3 a b^2 \left (a^2-b^2\right )^2 d \sqrt{\frac{b+a \cos (c+d x)}{a+b}}}-\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d \cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}}+\frac{2 \left (A b^4-4 a b^3 B-3 a^4 C+a^2 b^2 (3 A+7 C)\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt{\cos (c+d x)} \sqrt{a+b \sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 36.9811, size = 119861, normalized size = 268.15 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C]  time = 0.718, size = 3739, normalized size = 8.4 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x)

[Out]

-2/3/d*(-1+cos(d*x+c))^3*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(cos(d*x+c)+1)^5*(-4*B*EllipticE((-1+cos(d*x+c))*
((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*cos(d*x+c
)*a^2*b^3-B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(
d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*a^3*b^2+7*C*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(
-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)*a^3*b^2+4*C*(1/(a+b)*(b+a*cos(
d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*c
os(d*x+c)*a^4*b+3*A*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)*a^3*b^2+A*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*
x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)*a*b^4-3*A*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2
))*cos(d*x+c)*a^3*b^2-3*C*((a-b)/(a+b))^(1/2)*cos(d*x+c)*a^5*(1/(cos(d*x+c)+1))^(3/2)*sin(d*x+c)+B*((a-b)/(a+b
))^(1/2)*sin(d*x+c)*a^3*b^2*(1/(cos(d*x+c)+1))^(3/2)+B*((a-b)/(a+b))^(1/2)*sin(d*x+c)*a^2*b^3*(1/(cos(d*x+c)+1
))^(3/2)-4*B*((a-b)/(a+b))^(1/2)*sin(d*x+c)*a*b^4*(1/(cos(d*x+c)+1))^(3/2)-4*C*((a-b)/(a+b))^(1/2)*a^4*b*(1/(c
os(d*x+c)+1))^(3/2)*sin(d*x+c)-C*((a-b)/(a+b))^(1/2)*a^3*b^2*(1/(cos(d*x+c)+1))^(3/2)*sin(d*x+c)+7*C*((a-b)/(a
+b))^(1/2)*a^2*b^3*(1/(cos(d*x+c)+1))^(3/2)*sin(d*x+c)+2*A*((a-b)/(a+b))^(1/2)*sin(d*x+c)*a^2*b^3*(1/(cos(d*x+
c)+1))^(3/2)-A*((a-b)/(a+b))^(1/2)*sin(d*x+c)*a*b^4*(1/(cos(d*x+c)+1))^(3/2)-3*C*EllipticE((-1+cos(d*x+c))*((a
-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)*a
^5+6*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c
),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*a^5+A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x
+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^5-6*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*cos(d*x+c)*a^
4*b+6*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x
+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*cos(d*x+c)*a^3*b^2+6*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*
EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*cos(d*x+c)*a^2*b^
3-9*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c)
,(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*a^3*b^2-3*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+co
s(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*a^2*b^3+3*B*(1/(a+b)*(b+a*cos(d*x+c)
)/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x
+c)*a^2*b^3+3*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/
sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^4-6*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(
d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*a^4*b-6*C*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1
/2))*a^3*b^2+6*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2
)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*a^2*b^3+6*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*El
lipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*a*b^4-3*C*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))
^(1/2))*a*b^4-6*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/
2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*cos(d*x+c)*a^5+A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)*a^2*b^3+B*((a-b)
/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)*a^3*b^2*(1/(cos(d*x+c)+1))^(3/2)+3*A*((a-b)/(a+b))^(1/2)*sin(d*x+c)*cos(d*
x+c)*a^3*b^2*(1/(cos(d*x+c)+1))^(3/2)-A*((a-b)/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)*a^2*b^3*(1/(cos(d*x+c)+1))^(
3/2)-3*B*((a-b)/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)*a^2*b^3*(1/(cos(d*x+c)+1))^(3/2)-C*((a-b)/(a+b))^(1/2)*cos(
d*x+c)*a^4*b*(1/(cos(d*x+c)+1))^(3/2)*sin(d*x+c)+6*C*((a-b)/(a+b))^(1/2)*cos(d*x+c)*a^3*b^2*(1/(cos(d*x+c)+1))
^(3/2)*sin(d*x+c)-9*C*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b^3-B*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a
+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b^3-4*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d
*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^4+6*C*Ellip
ticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c
)+1))^(1/2)*a^4*b+4*C*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*b^2-3*C*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-
(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^4*b+7*C*EllipticE((-1+cos(d*x+c))*((a-b)
/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b^3+A*((a-b
)/(a+b))^(1/2)*sin(d*x+c)*b^5*(1/(cos(d*x+c)+1))^(3/2)-3*A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d
*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b^3+A*EllipticF((-1+cos(d*x+c)
)*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^4+3
*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-
(a+b)/(a-b))^(1/2))*a^2*b^3)*cos(d*x+c)^(1/2)*((a-b)/(a+b))^(1/2)*(1/(cos(d*x+c)+1))^(3/2)/a/(a+b)/(a-b)^2/b^2
/(b+a*cos(d*x+c))^2/sin(d*x+c)^6

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^(3/2)), x)